Function reference
-
wrap.correlation()
- Prepare Data on Correlation Manifold
-
wrap.euclidean()
- Prepare Data on Euclidean Space
-
wrap.grassmann()
- Prepare Data on Grassmann Manifold
-
wrap.landmark()
- Wrap Landmark Data on Shape Space
-
wrap.multinomial()
- Prepare Data on Multinomial Manifold
-
wrap.rotation()
- Prepare Data on Rotation Group
-
wrap.spd()
- Prepare Data on Symmetric Positive-Definite (SPD) Manifold
-
wrap.spdk()
- Prepare Data on SPD Manifold of Fixed-Rank
-
wrap.sphere()
- Prepare Data on Sphere
-
wrap.stiefel()
- Prepare Data on (Compact) Stiefel Manifold
-
riem.interp()
- Geodesic Interpolation
-
riem.interps()
- Geodesic Interpolation of Multiple Points
-
riem.pdist()
- Compute Pairwise Distances for Data
-
riem.pdist2()
- Compute Pairwise Distances for Two Sets of Data
-
riem.wasserstein()
- Wasserstein Distance between Empirical Measures
-
predict(<m2skreg>)
- Prediction for Manifold-to-Scalar Kernel Regression
-
riem.fanova()
riem.fanovaP()
- Fréchet Analysis of Variance
-
riem.m2skreg()
- Manifold-to-Scalar Kernel Regression
-
riem.m2skregCV()
- Manifold-to-Scalar Kernel Regression with K-Fold Cross Validation
-
riem.mean()
- Fréchet Mean and Variation
-
riem.median()
- Fréchet Median and Variation
-
riem.test2bg14()
- Two-Sample Test modified from Biswas and Ghosh (2014)
-
riem.test2wass()
- Two-Sample Test with Wasserstein Metric
-
riem.clrq()
- Competitive Learning Riemannian Quantization
-
riem.hclust()
- Hierarchical Agglomerative Clustering
-
riem.kmeans()
- K-Means Clustering
-
riem.kmeans18B()
- K-Means Clustering with Lightweight Coreset
-
riem.kmeanspp()
- K-Means++ Clustering
-
riem.kmedoids()
- K-Medoids Clustering
-
riem.nmshift()
- Nonlinear Mean Shift
-
riem.sc05Z()
- Spectral Clustering by Zelnik-Manor and Perona (2005)
-
riem.scNJW()
- Spectral Clustering by Ng, Jordan, and Weiss (2002)
-
riem.scSM()
- Spectral Clustering by Shi and Malik (2000)
-
riem.scUL()
- Spectral Clustering with Unnormalized Laplacian
-
riem.isomap()
- Isometric Feature Mapping
-
riem.kpca()
- Kernel Principal Component Analysis
-
riem.mds()
- Multidimensional Scaling
-
riem.pga()
- Principal Geodesic Analysis
-
riem.phate()
- PHATE
-
riem.sammon()
- Sammon Mapping
-
riem.tsne()
- t-distributed Stochastic Neighbor Embedding
-
riem.distlp()
- Distance between Two Curves on Manifolds
-
riem.dtw()
- Dynamic Time Warping Distance
-
riem.coreset18B()
- Build Lightweight Coreset
-
riem.knn()
- Find K-Nearest Neighbors
-
riem.rmml()
- Riemannian Manifold Metric Learning
-
riem.seb()
- Find the Smallest Enclosing Ball
-
moSL()
loglkd(<moSL>)
label(<moSL>)
density(<moSL>)
- Finite Mixture of Spherical Laplace Distributions
-
moSN()
loglkd(<moSN>)
label(<moSN>)
density(<moSN>)
- Finite Mixture of Spherical Normal Distributions
-
sphere.geo2xyz()
sphere.xyz2geo()
- Convert between Cartesian Coordinates and Geographic Coordinates
-
sphere.runif()
- Generate Uniform Samples on Sphere
-
sphere.utest()
- Test of Uniformity on Sphere
-
stiefel.optSA()
- Simulated Annealing on Stiefel Manifold
-
stiefel.runif()
- Generate Uniform Samples on Stiefel Manifold
-
stiefel.utest()
- Test of Uniformity on Stiefel Manifold
-
grassmann.optmacg()
- Estimation of Distribution Algorithm with MACG Distribution
-
grassmann.runif()
- Generate Uniform Samples on Grassmann Manifold
-
grassmann.utest()
- Test of Uniformity on Grassmann Manifold
-
spd.geometry()
- Supported Geometries on SPD Manifold
-
spd.pdist()
- Pairwise Distance on SPD Manifold
-
spd.wassbary()
- Wasserstein Barycenter of SPD Matrices
-
dmacg()
rmacg()
mle.macg()
- Matrix Angular Central Gaussian Distribution
-
dsplaplace()
rsplaplace()
mle.splaplace()
- Spherical Laplace Distribution
-
dspnorm()
rspnorm()
mle.spnorm()
- Spherical Normal Distribution