Given \(N\) observations \(X_1, X_2, \ldots, X_M \in \mathcal{M}\), perform hierarchical agglomerative clustering with fastcluster package's implementation.
Arguments
- riemobj
a S3
"riemdata"
class for \(N\) manifold-valued data.- geometry
(case-insensitive) name of geometry; either geodesic (
"intrinsic"
) or embedded ("extrinsic"
) geometry.- method
agglomeration method to be used. This must be one of
"single"
,"complete"
,"average"
,"mcquitty"
,"ward.D"
,"ward.D2"
,"centroid"
or"median"
.- members
NULL
or a vector whose length equals the number of observations. Seehclust
for details.
Value
an object of class hclust
. See hclust
for details.
References
Müllner D (2013). “fastcluster : Fast Hierarchical, Agglomerative Clustering Routines for R and Python.” Journal of Statistical Software, 53(9). ISSN 1548-7660.
Examples
#-------------------------------------------------------------------
# Example on Sphere : a dataset with three types
#
# class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3
# class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3
#-------------------------------------------------------------------
## GENERATE DATA
mydata = list()
for (i in 1:10){
tgt = c(1, stats::rnorm(2, sd=0.1))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 11:20){
tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 21:30){
tgt = c(stats::rnorm(2, sd=0.1), 1)
mydata[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem = wrap.sphere(mydata)
## COMPUTE SINGLE AND COMPLETE LINKAGE
hc.sing <- riem.hclust(myriem, method="single")
hc.comp <- riem.hclust(myriem, method="complete")
## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(hc.sing, main="single linkage")
plot(hc.comp, main="complete linkage")
par(opar)