Given \(M\) observations \(X_1, X_2, \ldots, X_M \in \mathcal{M}\) and
\(N\) observations \(Y_1, Y_2, \ldots, Y_N \in \mathcal{M}\), permutation
test based on the Wasserstein metric (see riem.wasserstein
for
more details) is applied to test whether two distributions are same or not, i.e.,
$$H_0~:~\mathcal{P}_X = \mathcal{P}_Y$$
with Wasserstein metric \(\mathcal{W}_p\) being the measure of discrepancy
between two samples.
Usage
riem.test2wass(
riemobj1,
riemobj2,
p = 2,
geometry = c("intrinsic", "extrinsic"),
...
)
Arguments
- riemobj1
a S3
"riemdata"
class for \(M\) manifold-valued data.- riemobj2
a S3
"riemdata"
class for \(N\) manifold-valued data.- p
an exponent for Wasserstein distance \(\mathcal{W}_p\) (default: 2).
- geometry
(case-insensitive) name of geometry; either geodesic (
"intrinsic"
) or embedded ("extrinsic"
) geometry.- ...
extra parameters including
- nperm
the number of permutations (default: 999).
- use.smooth
a logical;
TRUE
to use a smoothed Wasserstein distance,FALSE
otherwise.
Value
a (list) object of S3
class htest
containing:
- statistic
a test statistic.
- p.value
\(p\)-value under \(H_0\).
- alternative
alternative hypothesis.
- method
name of the test.
- data.name
name(s) of provided sample data.
Examples
#-------------------------------------------------------------------
# Example on Sphere : a dataset with two types
#
# class 1 : 20 perturbed data points near (1,0,0) on S^2 in R^3
# class 2 : 30 perturbed data points near (0,1,0) on S^2 in R^3
#-------------------------------------------------------------------
## GENERATE DATA
mydata1 = list()
mydata2 = list()
for (i in 1:20){
tgt = c(1, stats::rnorm(2, sd=0.1))
mydata1[[i]] = tgt/sqrt(sum(tgt^2))
}
for (i in 1:20){
tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1))
mydata2[[i]] = tgt/sqrt(sum(tgt^2))
}
myriem1 = wrap.sphere(mydata1)
myriem2 = wrap.sphere(mydata2)
## PERFORM PERMUTATION TEST
# it is expected to return a very small number, but
# small number of 'nperm' may not give a reasonable p-value.
# \donttest{
riem.test2wass(myriem1, myriem2, nperm=99, use.smooth=FALSE)
#>
#> Wasserstein Two-Sample Test on Sphere Manifold
#>
#> data: 'myriem1' and 'myriem2'
#> Wmn = 1.5712, p-value = 0.01
#> alternative hypothesis: two distributions are not equal.
#>
# }
if (FALSE) {
## CHECK WITH EMPIRICAL TYPE-1 ERROR
set.seed(777)
ntest = 1000
pvals = rep(0,ntest)
for (i in 1:ntest){
X = cbind(matrix(rnorm(30*2, sd=0.1),ncol=2), rep(1,30))
Y = cbind(matrix(rnorm(30*2, sd=0.1),ncol=2), rep(1,30))
Xnorm = X/sqrt(rowSums(X^2))
Ynorm = Y/sqrt(rowSums(Y^2))
Xriem = wrap.sphere(Xnorm)
Yriem = wrap.sphere(Ynorm)
pvals[i] = riem.test2wass(Xriem, Yriem, nperm=999)$p.value
print(paste0("iteration ",i,"/",ntest," complete.."))
}
emperr = round(sum((pvals <= 0.05))/ntest, 5)
print(paste0("* EMPIRICAL TYPE-1 ERROR=", emperr))
}