Interactive Document Map originates from text analysis to generate maps of documents by placing
similar documents in the same neighborhood. After defining pairwise distance with cosine similarity,
authors asserted to use either NNP
or FastMap
as an engine behind.
an \((n\times p)\) matrix or data frame whose rows are observations and columns represent independent variables.
an integer-valued target dimension.
an additional option for preprocessing the data.
Default is "null". See also aux.preprocess
for more details.
either NNP
or FastMap
.
a named list containing
an \((n\times ndim)\) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Minghim R, Paulovich FV, de Andrade Lopes A (2006). “Content-Based Text Mapping Using Multi-Dimensional Projections for Exploration of Document Collections.” In Erbacher RF, Roberts JC, Gröhn MT, Börner K (eds.), Visualization and Data Analysis, 60600S.
# \donttest{
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## let's compare with other methods
out1 <- do.pca(X, ndim=2)
out2 <- do.lda(X, ndim=2, label=lab)
out3 <- do.idmap(X, ndim=2, engine="NNP")
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=lab, main="PCA")
plot(out2$Y, pch=19, col=lab, main="LDA")
plot(out3$Y, pch=19, col=lab, main="IDMAP")
par(opar)
# }