Kernel-Weighted Unsupervised Discriminant Projection (KUDP) is a generalization of UDP where
proximity is given by weighted values via heat kernel,
$$K_{i,j} = \exp(-\|x_i-x_j\|^2/bandwidth)$$
whence UDP uses binary connectivity. If bandwidth
is \(+\infty\), it becomes
a standard UDP problem. Like UDP, it also performs PCA preprocessing for rank-deficient case.
an \((n\times p)\) matrix or data frame whose rows are observations and columns represent independent variables.
an integer-valued target dimension.
a vector of neighborhood graph construction. Following types are supported;
c("knn",k)
, c("enn",radius)
, and c("proportion",ratio)
.
Default is c("proportion",0.1)
, connecting about 1/10 of nearest data points
among all data points. See also aux.graphnbd
for more details.
an additional option for preprocessing the data.
Default is "center". See also aux.preprocess
for more details.
bandwidth parameter for heat kernel as the equation above.
a named list containing
an \((n\times ndim)\) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a \((p\times ndim)\) whose columns are basis for projection.
the number of PCA target dimension used in preprocessing.
Yang J, Zhang D, Yang J, Niu B (2007). “Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(4), 650--664.
## use iris dataset
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## use different kernel bandwidth
out1 <- do.kudp(X, bandwidth=0.1)
out2 <- do.kudp(X, bandwidth=10)
out3 <- do.kudp(X, bandwidth=1000)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, col=lab, pch=19, main="bandwidth=0.1")
plot(out2$Y, col=lab, pch=19, main="bandwidth=10")
plot(out3$Y, col=lab, pch=19, main="bandwidth=1000")
par(opar)