Adaptive Dimension Reduction (Ding et al. 2002) iteratively finds the best subspace to perform data clustering. It can be regarded as one of remedies for clustering in high dimensional space. Eigenvectors of a between-cluster scatter matrix are used as basis of projection.
do.adr(X, ndim = 2, ...)
an \((n\times p)\) matrix or data frame whose rows are observations.
an integer-valued target dimension.
extra parameters including
maximum number of iterations (default: 100).
absolute tolerance stopping criterion (default: 1e-8).
a named Rdimtools
S3 object containing
an \((n\times ndim)\) matrix whose rows are embedded observations.
a \((p\times ndim)\) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Ding C, Xiaofeng He, Hongyuan Zha, Simon HD (2002). “Adaptive Dimension Reduction for Clustering High Dimensional Data.” In Proceedings 2002 IEEE International Conference on Data Mining, 147--154.
# \donttest{
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## compare ADR with other methods
outADR = do.adr(X)
outPCA = do.pca(X)
outLDA = do.lda(X, label)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(outADR$Y, col=label, pch=19, main="ADR")
plot(outPCA$Y, col=label, pch=19, main="PCA")
plot(outLDA$Y, col=label, pch=19, main="LDA")
par(opar)
# }