Local Fisher Discriminant Analysis (LFDA) is a linear dimension reduction method for supervised case, i.e., labels are given. It reflects local information to overcome undesired results of traditional Fisher Discriminant Analysis which results in a poor mapping when samples in a single class form form several separate clusters.

do.lfda(
  X,
  label,
  ndim = 2,
  preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
  type = c("proportion", 0.1),
  symmetric = c("union", "intersect", "asymmetric"),
  localscaling = TRUE
)

Arguments

X

an \((n\times p)\) matrix or data frame whose rows are observations and columns represent independent variables.

label

a length-\(n\) vector of data class labels.

ndim

an integer-valued target dimension.

preprocess

an additional option for preprocessing the data. Default is "center". See also aux.preprocess for more details.

type

a vector of neighborhood graph construction. Following types are supported; c("knn",k), c("enn",radius), and c("proportion",ratio). Default is c("proportion",0.1), connecting about 1/10 of nearest data points among all data points. See also aux.graphnbd for more details.

symmetric

one of "intersect", "union" or "asymmetric" is supported. Default is "union". See also aux.graphnbd for more details.

localscaling

TRUE to use local scaling method for construction affinity matrix, FALSE for binary affinity.

Value

a named list containing

Y

an \((n\times ndim)\) matrix whose rows are embedded observations.

projection

a \((p\times ndim)\) whose columns are basis for projection.

trfinfo

a list containing information for out-of-sample prediction.

References

Sugiyama M (2006). “Local Fisher Discriminant Analysis for Supervised Dimensionality Reduction.” In Proceedings of the 23rd International Conference on Machine Learning, 905--912.

Zelnik-manor L, Perona P (2005). “Self-Tuning Spectral Clustering.” In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 1601--1608. MIT Press.

Author

Kisung You

Examples

## generate 3 different groups of data X and label vector
x1 = matrix(rnorm(4*10), nrow=10)-20
x2 = matrix(rnorm(4*10), nrow=10)
x3 = matrix(rnorm(4*10), nrow=10)+20
X     = rbind(x1, x2, x3)
label = rep(1:3, each=10)

## try different affinity matrices
out1 = do.lfda(X, label)
out2 = do.lfda(X, label, localscaling=FALSE)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(out1$Y, col=label, main="binary affinity matrix")
plot(out2$Y, col=label, main="local scaling affinity")

par(opar)