Locally Linear Embedding (LLE) is a powerful nonlinear manifold learning method. This method, Locally Linear Embedded Eigenspace Analysis - LEA, in short - is a linear approximation to LLE, similar to Neighborhood Preserving Embedding. In our implementation, the choice of weight binarization is removed in order to respect original work. For 1-dimensional projection, which is rarely performed, authors provided a detour for rank correcting mechanism but it is omitted for practical reason.
an \((n\times p)\) matrix or data frame whose rows are observations and columns represent independent variables.
an integer-valued target dimension.
a vector of neighborhood graph construction. Following types are supported;
c("knn",k)
, c("enn",radius)
, and c("proportion",ratio)
.
Default is c("proportion",0.1)
, connecting about 1/10 of nearest data points
among all data points. See also aux.graphnbd
for more details.
one of "intersect"
, "union"
or "asymmetric"
is supported. Default is "union"
. See also aux.graphnbd
for more details.
an additional option for preprocessing the data.
Default is "center". See also aux.preprocess
for more details.
a named list containing
an \((n\times ndim)\) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a \((p\times ndim)\) whose columns are basis for projection.
Fu Y, Huang TS (2005). “Locally Linear Embedded Eigenspace Analysis.” IFP-TR, UIUC, 2005, 2--05.
if (FALSE) {
## use iris dataset
data(iris)
set.seed(100)
subid <- sample(1:150, 50)
X <- as.matrix(iris[subid,1:4])
lab <- as.factor(iris[subid,5])
## compare LEA with LLE and another approximation NPE
out1 <- do.lle(X, ndim=2)
out2 <- do.npe(X, ndim=2)
out3 <- do.lea(X, ndim=2)
## visual comparison
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=lab, main="LLE")
plot(out2$Y, pch=19, col=lab, main="NPE")
plot(out3$Y, pch=19, col=lab, main="LEA")
par(opar)
}