Derivation of Euler-Lagrange Equation

for ROF denoising algorithm

Kisung You

kisungyou@outlook.com

June 20, 2021

1 Rudin-Osher-Fatemi TV-L2 Denoising Model

Since this article is not meant for comprehensive introduction to the problem, I will not thoroughly review theoretic
cues. Depending on which viewpoint one takes upon the problem, a common framework of energy formulation on

desirable denoised image u given a noisy picture ug is
Eluluo] = A|u — uo||3 + [|Vullx (1)

where the first term measures closeness of desirable solution to the noisy picture and the second is smoothness
penalty - also known as regularization - that penalizes non-smoothness on pursued solution. A, which originates
from Lagrange multiplier, plays a balancing role between noise model and image’s smoothness requirement. In this
formulation, large A value weighs closeness and small one focuses on smoothing effect. First-order condition for a
minimizer u* is that its derivative VE = 0 and this Gateaux derivative is achieved via Euler-Lagrange equation. A

classical solution is to proceed with time-marching method,
uy = —V E[u|ug] (2)

to reach at minimum energy level. For reference, see Rudin, Osher, Fatemi (1992) ” Nonlinear total variation based

image removal algorithm” [1].

2 Basic Calculus

First we need is divergence theorem. Suppose €2 is a compact subset of R with a piecewise smooth boundary denoted

by 0. If F is a continuously differentiable vector field which is defined on 2, we have

/ (V-F)iV = [ (F-n)ds, (3)
Q o0



where left part is volume integral over 0 which expresses, in some sense, change within the entire volume and right
side is surface integral over the boundary 92 of €2, which somehow measures outwards flux on its surface.

In addition, we need following equality

/QV-(qu):/QVu~Vv+/QuV~(Vv)z/QVwVU-i-/Qu(V%). (4)

3 Derivation of Euler-Lagrange equation

A standard Euler-Lagrange equation pertains to the concept of directional derivative in that we can achieve in via
following

d
0=V 7 ‘t o [u + tv] (5)

and calculation is as follows.

grirnl =5 (A [ s —wp+ [ [wsw))
d
i

v (/Q |V(u—|—tv)|)

= )\/ (2tv? + 2uv — 2ugv) + 4 (/ |V (u+ tv)|> .
Q dt \Jo

For the second term above, using chain rule, we have
d V(u+ tv)
— \Y t = | —/————-V
7 ([veron) = [ oy v

1 if x>0

d
=\ </ u? +t20? + ug + 2tuv — 2tugv — 2uu0>
Q

since

d T
*|ﬂ?|=m=89n(l‘)= -1 <0

(—1,1) otherwise.

Combining these two and inserting t = 0, we have

0:VE:2)\/Q((u—uo)v)+/Q(|§Z|~Vv) (6)

and we need to further apply basic calculus results from the above in that
Vu > / ( Vu > / Vu
— Vv | = — Vi—e|v+ [ V- vi=
/Q (IVUI Q [Vl o  IVyl
Vu Vu
=— [ div () v —|—/ div (U)
/sz [Vul 0 [Vul
Vu

:_/Qdiv(Wu')er/anvvu(Vu-n).



Therefore, if we set Vu - n = 0, we have

0= /Q <(2)\(u — ) — div <§Z|>) v (1)

and since it should be satisfied with arbitrary direction v, we finally have

(u—up) — 5xdiv (%) =0 in Q ®

%:0 on 0.

Then, time-marching methods can be written as following differential equation with Neumann boundary
condition,
9u = (ug —u) + 55 div (‘g—z) in Q

%ZO on ON.
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