Zelnik-Manor and Perona proposed a method to define a set of data-driven bandwidth parameters where \(\sigma_i\) is the distance from a point \(x_i\) to its nnbd-th nearest neighbor. Then the affinity matrix is defined as $$A_{ij} = \exp(-d(x_i, d_j)^2 / \sigma_i \sigma_j)$$ and the standard spectral clustering of Ng, Jordan, and Weiss (scNJW) is applied.

sc05Z(data, k = 2, nnbd = 7, ...)

Arguments

data

an \((n\times p)\) matrix of row-stacked observations or S3 dist object of \(n\) observations.

k

the number of clusters (default: 2).

nnbd

neighborhood size to define data-driven bandwidth parameter (default: 7).

...

extra parameters including

algclust

method to perform clustering on embedded data; either "kmeans" (default) or "GMM".

maxiter

the maximum number of iterations (default: 10).

Value

a named list of S3 class T4cluster containing

cluster

a length-\(n\) vector of class labels (from \(1:k\)).

eigval

eigenvalues of the graph laplacian's spectral decomposition.

embeds

an \((n\times k)\) low-dimensional embedding.

algorithm

name of the algorithm.

References

Zelnik-manor L, Perona P (2005). “Self-Tuning Spectral Clustering.” In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 1601--1608. MIT Press.

Examples

# ------------------------------------------------------------- # clustering with 'iris' dataset # ------------------------------------------------------------- ## PREPARE data(iris) X = as.matrix(iris[,1:4]) lab = as.integer(as.factor(iris[,5])) ## EMBEDDING WITH PCA X2d = Rdimtools::do.pca(X, ndim=2)$Y ## CLUSTERING WITH DIFFERENT K VALUES cl2 = sc05Z(X, k=2)$cluster cl3 = sc05Z(X, k=3)$cluster cl4 = sc05Z(X, k=4)$cluster ## VISUALIZATION opar <- par(no.readonly=TRUE) par(mfrow=c(1,4), pty="s") plot(X2d, col=lab, pch=19, main="true label") plot(X2d, col=cl2, pch=19, main="sc05Z: k=2") plot(X2d, col=cl3, pch=19, main="sc05Z: k=3") plot(X2d, col=cl4, pch=19, main="sc05Z: k=4")
par(opar)