When the data lies in a high-dimensional Euclidean space, fitting a model-based clustering algorithm is troublesome. This function implements an algorithm from the reference, which uses an aggregate information from an ensemble of Gaussian mixtures in combination with random projection.

gmm03F(data, k = 2, ...)

Arguments

data

an \((n\times p)\) matrix of row-stacked observations.

k

the number of clusters (default: 2).

...

extra parameters including

nruns

the number of projections (default: 20).

lowdim

target dimension for random projection (default: 5).

maxiter

the maximum number of iterations (default: 10).

usediag

a logical; covariances are diagonal if TRUE, or full covariances are returned for FALSE (default: FALSE).

Value

a named list of S3 class T4cluster containing

cluster

a length-\(n\) vector of class labels (from \(1:k\)).

algorithm

name of the algorithm.

References

Fern XZ, Brodley CE (2003). “Random Projection for High Dimensional Data Clustering: A Cluster Ensemble Approach.” In Proceedings of the Twentieth International Conference on International Conference on Machine Learning, ICML'03, 186–193. ISBN 1577351894.

Examples

# \donttest{ # ------------------------------------------------------------- # clustering with 'iris' dataset # ------------------------------------------------------------- ## PREPARE data(iris) X = as.matrix(iris[,1:4]) lab = as.integer(as.factor(iris[,5])) ## EMBEDDING WITH PCA X2d = Rdimtools::do.pca(X, ndim=2)$Y ## CLUSTERING WITH DIFFERENT K VALUES cl2 = gmm03F(X, k=2)$cluster cl3 = gmm03F(X, k=3)$cluster cl4 = gmm03F(X, k=4)$cluster ## VISUALIZATION opar <- par(no.readonly=TRUE) par(mfrow=c(2,2), pty="s") plot(X2d, col=lab, pch=19, main="true label") plot(X2d, col=cl2, pch=19, main="gmm03F: k=2") plot(X2d, col=cl3, pch=19, main="gmm03F: k=3") plot(X2d, col=cl4, pch=19, main="gmm03F: k=4")
par(opar) # }