Given an univariate sample \(x\), it tests $$H_0 : x\textrm{ is from normal distribution} \quad vs\quad H_1 : \textrm{ not } H_0$$ using a test procedure by Shapiro and Wilk (1965). Actual computation of \(p\)-value is done via an approximation scheme by Royston (1992).
norm.1965SW(x)
a length-\(n\) data vector.
a (list) object of S3
class htest
containing:
a test statistic.
\(p\)-value under \(H_0\).
alternative hypothesis.
name of the test.
name(s) of provided sample data.
Shapiro SS, Wilk MB (1965). “An Analysis of Variance Test for Normality (Complete Samples).” Biometrika, 52(3/4), 591. ISSN 00063444.
Royston P (1992). “Approximating the Shapiro-Wilk W-test for non-normality.” Statistics and Computing, 2(3), 117--119. ISSN 0960-3174, 1573-1375.