Given an univariate sample \(x\), it tests $$H_0 : \mu_x = \mu_0\quad vs\quad H_1 : \mu_x \neq \mu_0$$ using the procedure by Student (1908).
mean1.ttest(x, mu0 = 0, alternative = c("two.sided", "less", "greater"))
a length-\(n\) data vector.
hypothesized mean \(\mu_0\).
specifying the alternative hypothesis.
a (list) object of S3
class htest
containing:
a test statistic.
\(p\)-value under \(H_0\).
alternative hypothesis.
name of the test.
name(s) of provided sample data.
Student (1908). “The Probable Error of a Mean.” Biometrika, 6(1), 1. ISSN 00063444.
Student (1908). “Probable Error of a Correlation Coefficient.” Biometrika, 6(2-3), 302--310. ISSN 0006-3444, 1464-3510.
## empirical Type 1 error
niter = 1000
counter = rep(0,niter) # record p-values
for (i in 1:niter){
x = rnorm(10) # sample from N(0,1)
counter[i] = ifelse(mean1.ttest(x)$p.value < 0.05, 1, 0)
}
## print the result
cat(paste("\n* Example for 'mean1.ttest'\n","*\n",
"* number of rejections : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
#>
#> * Example for 'mean1.ttest'
#> *
#> * number of rejections : 46
#> * total number of trials : 1000
#> * empirical Type 1 error : 0.046