R/mean1.2008SD.R
mean1.2008SD.Rd
Given a multivariate sample \(X\) and hypothesized mean \(\mu_0\), it tests $$H_0 : \mu_x = \mu_0\quad vs\quad H_1 : \mu_x \neq \mu_0$$ using the procedure by Srivastava and Du (2008).
an \((n\times p)\) data matrix where each row is an observation.
a length-\(p\) mean vector of interest.
a (list) object of S3
class htest
containing:
a test statistic.
\(p\)-value under \(H_0\).
alternative hypothesis.
name of the test.
name(s) of provided sample data.
Srivastava MS, Du M (2008). “A test for the mean vector with fewer observations than the dimension.” Journal of Multivariate Analysis, 99(3), 386--402. ISSN 0047259X.
## CRAN-purpose small example
smallX = matrix(rnorm(10*3),ncol=3)
mean1.2008SD(smallX) # run the test
#>
#> One-sample Test for Mean Vector by Srivastava and Du (2008).
#>
#> data: smallX
#> statistic = -0.5558, p-value = 0.7108
#> alternative hypothesis: true mean is different from mu0.
#>
# \donttest{
## empirical Type 1 error
niter = 1000
counter = rep(0,niter) # record p-values
for (i in 1:niter){
X = matrix(rnorm(50*5), ncol=5)
counter[i] = ifelse(mean1.2008SD(X)$p.value < 0.05, 1, 0)
}
## print the result
cat(paste("\n* Example for 'mean1.2008SD'\n","*\n",
"* number of rejections : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
#>
#> * Example for 'mean1.2008SD'
#> *
#> * number of rejections : 58
#> * total number of trials : 1000
#> * empirical Type 1 error : 0.058
# }