R/mean1.1958Dempster.R
mean1.1958Dempster.Rd
Given a multivariate sample X and hypothesized mean μ0, it tests H0:μx=μ0vsH1:μx≠μ0 using the procedure by Dempster (1958, 1960).
an (n×p) data matrix where each row is an observation.
a length-p mean vector of interest.
a (list) object of S3
class htest
containing:
a test statistic.
p-value under H0.
alternative hypothesis.
name of the test.
name(s) of provided sample data.
Dempster AP (1958). “A High Dimensional Two Sample Significance Test.” The Annals of Mathematical Statistics, 29(4), 995--1010. ISSN 0003-4851.
Dempster AP (1960). “A Significance Test for the Separation of Two Highly Multivariate Small Samples.” Biometrics, 16(1), 41. ISSN 0006341X.
## CRAN-purpose small example
smallX = matrix(rnorm(10*3),ncol=3)
mean1.1958Dempster(smallX) # run the test
#>
#> One-sample Test for Mean Vector by Dempster (1958).
#>
#> data: smallX
#> statistic = 0.69274, p-value = 0.5642
#> alternative hypothesis: true mean is different from mu0.
#>
# \donttest{
## empirical Type 1 error
niter = 1000
counter = rep(0,niter) # record p-values
for (i in 1:niter){
X = matrix(rnorm(50*5), ncol=50)
counter[i] = ifelse(mean1.1958Dempster(X)$p.value < 0.05, 1, 0)
}
## print the result
cat(paste("\n* Example for 'mean1.1958Dempster'\n","*\n",
"* number of rejections : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
#>
#> * Example for 'mean1.1958Dempster'
#> *
#> * number of rejections : 71
#> * total number of trials : 1000
#> * empirical Type 1 error : 0.071
# }