R/mean1.1931Hotelling.R
mean1.1931Hotelling.Rd
Given a multivariate sample \(X\) and hypothesized mean \(\mu_0\), it tests $$H_0 : \mu_x = \mu_0\quad vs\quad H_1 : \mu_x \neq \mu_0$$ using the procedure by Hotelling (1931).
an \((n\times p)\) data matrix where each row is an observation.
a length-\(p\) mean vector of interest.
a (list) object of S3
class htest
containing:
a test statistic.
\(p\)-value under \(H_0\).
alternative hypothesis.
name of the test.
name(s) of provided sample data.
Hotelling H (1931). “The Generalization of Student's Ratio.” The Annals of Mathematical Statistics, 2(3), 360--378. ISSN 0003-4851.
## CRAN-purpose small example
smallX = matrix(rnorm(10*3),ncol=3)
mean1.1931Hotelling(smallX) # run the test
#>
#> One-sample Hotelling's T-squared Test
#>
#> data: smallX
#> statistic = 4.1391, p-value = 0.42
#> alternative hypothesis: true mean is different from mu0.
#>
if (FALSE) {
## empirical Type 1 error
niter = 1000
counter = rep(0,niter) # record p-values
for (i in 1:niter){
X = matrix(rnorm(50*5), ncol=5)
counter[i] = ifelse(mean1.1931Hotelling(X)$p.value < 0.05, 1, 0)
}
## print the result
cat(paste("\n* Example for 'mean1.1931Hotelling'\n","*\n",
"* number of rejections : ", sum(counter),"\n",
"* total number of trials : ", niter,"\n",
"* empirical Type 1 error : ",round(sum(counter/niter),5),"\n",sep=""))
}