R/estimate_clustering.R
estimate_clustering.Rd
Instead of directly using neighborhood information, est.clustering
adopts hierarchical
neighborhood information using hclust
by recursively merging leafs
over the range of radii.
an \((n\times p)\) matrix or data frame whose rows are observations.
minimal number of neighborhood size to search over.
a named list containing containing
estimated intrinsic dimension.
Eriksson B, Crovella M (2012). “Estimating Intrinsic Dimension via Clustering.” In 2012 IEEE Statistical Signal Processing Workshop (SSP), 760--763.
# \donttest{
## create 'swiss' roll dataset
X = aux.gensamples(dname="swiss")
## try different k values
out1 = est.clustering(X, kmin=5)
out2 = est.clustering(X, kmin=25)
out3 = est.clustering(X, kmin=50)
## print the results
line1 = paste0("* est.clustering : kmin=5 gives ",round(out1$estdim,2))
line2 = paste0("* est.clustering : kmin=25 gives ",round(out2$estdim,2))
line3 = paste0("* est.clustering : kmin=50 gives ",round(out3$estdim,2))
cat(paste0(line1,"\n",line2,"\n",line3))
#> * est.clustering : kmin=5 gives 1.65
#> * est.clustering : kmin=25 gives 2.01
#> * est.clustering : kmin=50 gives 2.21
# }